by Zhan-Xin Zhang, Wei-Dong Xie, Ping-Lin Li, Yan-Ping Shi*, and Zhong-Jian Jia*

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China

(phone: +86-931-8912408; fax: +86-931-8912582; e-mail: jiazj@lzu.edu.cn or shiyp@lzb.ac.cn)

Six new compounds were isolated from the whole plant of *Sonchus uliginosus*, including three eudesmane-type sesquiterpenoids $(1\beta,6\alpha)$ -1,6,14-trihydroxyeudesm-3-en-12-oic acid γ -lactone (1), $(1\beta,6\alpha)$ -1,6,14-trihydroxyeudesma-3,11(13)-dien-12-oic acid γ -lactone (2), and $(1\beta,6\alpha)$ -1,6-dihydroxy-14-*O*-[(4hydroxyphenyl)acetyl]eudesma-3,11(13)-dien-12-oic acid γ -lactone (3), and three phenylpropane derivatives, 4-hydroxy- γ ,3,5-trimethoxybenzenepropanol (6), γ ,3,4,5-tetramethoxybenzenepropanol (7), and γ ,3,4,5-tetramethoxybenzenepropanol acetate (8), together with the two known compounds 4 and 5. The new structures were elucidated by means of spectroscopic methods, such as IR, EI-MS, HR-ESI-MS, 1D- and 2D-NMR, and by comparison of the spectroscopic data with those reported for structurally related compounds.

Introduction. – The genus *Sonchus*, representing 8 species in China, has long been used as folk medicine for the treatment of fever, stasis, and inflammation, as well as for detoxication and mobilization of blood circulation [1]. In some species, eudesmanolides [2][3], sesquiterpane glycosides [4][5][6], and ionone glycoside derivatives [5] have been found. Up to now, the chemical constituents of *S. uliginosus* have not been investigated. In continuation of our studies aimed at finding new chemical constituents from the Compositae plant family, we now report six new, *i.e.*, **1**–**3** and **6**–**8**, and two known compounds, *i.e.*, **4** and **5**[6], isolated from the whole plant of *S. uliginosus*.¹)

Results and Discussion. – Compound **1** was obtained as a white amorphous powder. The molecular formula of **1** was determined as $C_{15}H_{22}O_4$ based on HR-ESI-MS (m/z 284.1861 ($[M+NH_4]^+$)). The IR spectrum showed absorption bands for OH groups (3289 cm⁻¹) and a γ -lactone carbonyl group (1763 cm⁻¹). Comparing the data and features of the ¹H- and ¹³C-NMR spectra of **1** (*Table 1*) with those of known compounds [3][7], a structure based on a (6α)-6,14-dihydroxyeudesman-12-oic acid γ -lactone with an additional OH group and a C=C bond was inferred and confirmed by the HMBC data (see *Fig.*). The relative configuration of **1** was determined on the basis of the analysis of coupling constants and NOE experiments. From all these data, the structure of compound **1** was deduced as (1β , 6α)-1,6,14-trihydroxyeudesm-3-en-12-oic acid γ -lactone.

¹⁾ Arbitrary atom numbering; for systematic names, see Exper. Part.

^{© 2006} Verlag Helvetica Chimica Acta AG, Zürich

Figure. Key HMBC correlations $(H \rightarrow C)$ for 1, 3, and 6

The ¹H- and ¹³C-NMR (DEPT) spectra (*Table 1*) indicated the presence of 15 C-atoms, *i.e.*, two Me, four CH₂ (one for a CH₂OH), and six CH groups and three quaternary C-atoms. In the ¹H-NMR spectrum, there were typical signals for two Me groups at δ (H) 1.15 (*d*, *J* = 7.2 Hz) and 1.10 (*s*), as well as a signal for a C=CH moiety at δ (H) 6.14 (br. *s*, 1 H). In the ¹³C-NMR spectrum, there were resonances for an ester carbonyl at δ (C) 178.74, and three oxygenated C-atoms at δ (C) 80.73, 74.19, and 64.02. The HMBC cross-peaks between Me(15) at δ (H) 1.10 and C(1) at δ (C) 74.19, C(5) at δ (C) 48.89, C(9) at δ (C) 34.94, and C(10) at δ (C) 40.92, and between H–C(1) at δ (H) 3.88 and C(2) at δ (C) 32.91 indicated that the OH group was attached at C(1) (*Fig.*). The HMBC cross-peaks between CH₂(14) at δ (H) 4.60 and C(3) at δ (C) 120.63, C(4) at δ (C) 137.69, and C(5) at δ (C) 48.89 indicated that the C=C bond was between C(3) and C(4). The HMBC cross-peaks between H–C(5) at δ (H) 2.39 and C(6) at δ (C) 80.73 and C(7) at δ (C) 53.02 revealed that the γ -lactone moiety was at C(6) and C(7).

The large coupling constants observed for H–C(1) with H–C(2) $(J(1\alpha,2\beta) = 9.6 \text{ Hz})$ and for H–C(6) with H–C(5) $(J(6\beta,5\alpha) = 10.4 \text{ Hz})$ and H–C(7) $(J(6\beta,7\alpha) = 10.4 \text{ Hz})$ allowed the assignment of the relative configuration at the stereogenic centers C(1), C(6), and C(7), *i.e.*, of the α -position of H–C(1) and the $6\alpha,7\beta$ -orientation the γ -lactone moiety. In addition, in the NOE difference spectrum of **1**, the signal of H–C(6) was enhanced (2.85%) on irradiation of Me(15), indicating the β -orientation of H–C(6), whereas the signals of H–C(1), H–C(5), and H–C(7) were not affected, indicating their α -orientation. Further NOEs were observed for H–C(1)/H–C(5) and H–C(7) (3.61 and 1.81%, resp.), which also confirmed the relative configuration at C(1), C(5), C(6), and C(7). The configuration at C(11) was determined the relative configuration at C(1), C(5), C(6), and C(7).

	1		2		3 ^{a)}	
	$\delta(H)$	$\delta(C)$	$\delta(H)$	$\delta(C)$	δ(H)	$\delta(C)$
H–C(1)	3.88 (dd , $J = 6.8$, 9.6)	74.19 (<i>d</i>)	3.88 (dd , $J = 6.8$, 9.6)	74.08 (<i>d</i>)	4.10 (dd , $J = 7.2$, 9.2)	82.72 (<i>d</i>)
$CH_{2}(2)$	2.64, 2.39 (2m)	32.91 (t)	2.64, 2.59 (2m)	32.91 (t)	2.16, 2.08 (2m)	30.50 (t)
H-C(3)	6.14 (br. s)	120.63 (d)	6.14 (br. s)	120.75 (d)	5.61 (br. s)	130.34 (d)
C(4)	-	137.69 (s)	-	137.53 (s)	-	131.04 (s)
H–C(5)	2.39 (d, J = 10.4)	48.89 (d)	2.39 (d, J = 10.4)	49.37 (d)	2.51 (d, J = 10.8)	48.46 (d)
H–C(6)	4.16 (<i>dd</i> ,	80.73 (d)	4.11 (<i>dd</i> ,	81.13 (d)	2.65 (dd,	81.92 (<i>d</i>)
	J = 10.4, 10.4)		J = 10.4, 10.4		J = 10.8, 10.8)	
H–C(7)	1.47 (<i>m</i>)	53.02 (d)	2.50 (m)	50.50 (d)	2.08 (m)	49.76 (d)
$CH_2(8)$	1.68, 1.47 (2m)	22.50(t)	1.81, 1.51 (2m)	20.87(t)	2.03, 1.76 (2m)	20.47 (t)
CH ₂ (9)	1.47, 1.33 (2m)	34.94 (t)	1.47, 1.33 (2m)	34.60 (t)	1.68, 1.08 (2m)	34.16 (t)
C(10)	-	40.92 (s)	-	40.99 (s)	-	39.87 (s)
H–C(11) or	2.32 (<i>m</i>)	40.07 (d)	-	139.57 (s)	-	138.11 (s)
C(11)						
C(12)	_	178.74 (s)	-	170.07 (s)	-	173.83 (s)
Me(13) or	1.15 (d, J = 7.2)	12.12(q)	6.10, 5.31 (2 <i>d</i> ,	115.63 (t)	5.76, 5.34 (2d,	118.70 (t)
CH ₂ (13)			J = 2.4)		J = 2.8)	
$CH_{2}(14)$	4.60 (dd,	64.02 (t)	4.60 (<i>dd</i> ,	64.02 (t)	4.43, 4.15 (2d,	68.71 (t)
	J = 14.4, 6.8)		J = 14.4, 6.8)		J = 10.8)	
Me(15)	1.10 (s)	10.93 (q)	1.07 (s)	10.93 (q)	0.54 (s)	11.67(q)

Table 1. ^{*I*}*H- and* ^{*I*}³*C-NMR Data of* **1–3**. At 400 and 100 MHz, resp., in (D₅) pyridine (**1** and **2**) or D₂O (**3**); δ in ppm, *J* in Hz; trivial atom numbering.

^{a)} Ester group A–C(14): δ (H) 6.85 (*d*, *J*=8.4, H–C(2',6')), 6.48 (*d*, *J*=8.4, H–C(3',5')), 3.31 (*d*, *J*=14.8, CH₂–C(1')); δ (C) 125.83 (*s*, C(1')), 131.12 (*d*, C(2',6')), 115.85 (*d*, C(3',5')), 154.70 (*s*, C(4')), 40.99 (*t*, CH₂–C(1')), 173.99 (*s*, COO).

mined by means of empirical rules [8]. In the ¹³C-NMR spectrum, the δ (C) 12.12 of Me(13) is typical for 6-hydroxyeudesman-12-oic acid γ -lactones having an α -methyl group at C(11). This was confirmed by an NOE at the signal of H–C(11) (2.74%) on irradiation of H–C(6), indicating the β -orientation of H–C(11).

Compound **2** was obtained as a white amorphous powder with the molecular formula $C_{15}H_{20}O_4$ as deduced by HR-ESI-MS (m/z 282.1707 ($[M+NH_4]^+$)). The IR spectrum showed typical absorption bands for OH groups (3290 cm⁻¹) and an α -methylenesubstituted γ -lactone moiety (1753 cm⁻¹). From further data (see *Table 1*), the structure of **2** was elucidated as (1β , 6α)-1,6,14-trihydroxyeudesma-3,11(13)-dien-12-oic acid γ lactone.

Comparing the NMR data of **2** with those of **1**, the main difference was that the α -methyl-substituted γ -lactone moiety of **1** (δ (H) 1.15 (d, J = 7.2 Hz, Me(13)) and 2.32 (m, H–C(11)); δ (C) 12.12 (C(13)), 40.07 (C(11)), and 178.74 (C(12)) was replaced in **2** by an α -methylene-substituted γ -lactone moiety (δ (H) 6.10 and 5.31 (2d, J = 2.4 Hz, CH₂(13)); δ (C) at 115.63 (C(13)), 139.57 (C(11)), and 170.07 (C(12)). The HMBC cross-peaks between CH₂(13) at δ (H) 6.10 and 5.31 and C(7) at δ (C) 50.50, C(11) at δ (C) 139.57, and C(12) at δ (C) 170.07 confirmed the presence of an α -methylene-substituted γ -lactone unit. The remaining signals were similar to the ones of **1**.

Compound **3** was obtained as a yellow gum. The molecular formula $C_{23}H_{26}O_6$ was deduced from HR-ESI-MS which gave an $[M + Na]^+$ ion peak at m/z 421.4446. Comparing with compound **2**, the IR spectrum of **3** showed extra absorption bands for a benzyl group (1611, 1516, and 1445 cm⁻¹) and another ester carbonyl (1710 cm⁻¹), besides the absorption bands for an OH group (3404 cm⁻¹), and an α -methylene-substituted γ -lactone unit (1759 cm⁻¹). From the spectral data (see *Table 1*), compound **3** was identified as (1 β , α)-1,6-dihydroxy-14-*O*-[(4-hydroxyphenyl)acetyl]eudesma-3,11(13)-dien-12-oic acid γ -lactone.

The ¹H-NMR spectrum of **3** was similar to that of **2**, except for the appearance of signals due to a (4-hydroxyphenyl)acetate moiety at $\delta(H)$ 6.85 (d, J=8.4 Hz, H–C(2'), H–C(6')), 6.48 (d, J=8.4 Hz, H–C(3'), H–C(5')), and 3.31 (d, J=14.8 Hz, CH₂–C(1') [6] [9], which was confirmed by the ¹³C-NMR chemical shifts $\delta(C)$ 125.83 (C(1')), 131.12 (C(2'), C(6')), 115.85 (C(3'), C(5')), 154.70 (C(4')), 40.99 (CH₂–C(1')), and 173.99 (COO). The EI-MS of **3**, with a fragment ion at m/z 151.9 (C₈H₈O₃⁺), which was higher than other peaks, also indicated the presence of a (4-hydroxyphenyl)acetate group. The HMBC crosspeaks (*Fig.*) between CH₂(14) at $\delta(H)$ 4.43 and 4.15 and an ester C=O at $\delta(C)$ 173.99 indicated that the (4-hydroxyphenyl)acetate group was attached at C(14).

Compound **6** was obtained as a colorless gum. The HR-ESI-MS experiment showed the $[M + \text{Na}]^+$ signal at m/z 265.1049, in accord with the molecular formula $C_{12}H_{18}O_5$. In the IR spectrum, absorption bands for OH groups (3361 cm⁻¹) and a benzyl group (1610, 1516, 1459 cm⁻¹) were present. Careful comparison of the ¹H- and ¹³C-NMR data of **6** (*Table 2*) with those of related compounds [10–12], led to the conclusion that **6** had a phenylpropane skeleton. From further data (see *Table 2*), the structure of compound **6** was deduced as 3-hydroxy-1-(4-hydroxy-3,5-dimethoxyphenyl)-1-methoxypropane¹).

	6		7		8	
	$\delta(H)$	$\delta(C)$	δ(H)	$\delta(C)$	$\delta(H)$	$\delta(C)$
C(1)	_	132.63 (s)	_	137.31 (s)	_	137.26 (s)
H–C(2,6)	6.54 (br. s)	102.82(d)	6.53 (br. s)	102.89 (d)	6.51 (br. s)	102.96 (d)
C(3,5)	-	147.08(d)	-	153.32 (d)	-	153.34 (s)
C(4)	-	134.02 (s)	-	137.31 (s)	_	137.26 (s)
H–C(1′)	4.30 (dd, J = 4.2,	84.08 (d)	4.32 (dd, J = 3.9,	83.98 (d)	4.15 (m)	80.77 (d)
	9.3)		9.3)			
CH ₂ (2')	2.03, 1.85 (2m)	40.50 (t)	2.02, 1.85 (2m)	40.44 (t)	2.11, 1.94	37.17 (t)
					(2 <i>m</i>)	
CH ₂ (3')	3.78(t, J = 5.7)	61.22 (t)	3.79(t, J=5.4)	61.16 (<i>t</i>)	4.15 (<i>m</i>)	61.44 (t)
MeO-C(1')	3.24 (s)	56.50(q)	3.26 (s)	56.72(q)	3.23(s)	56.75 (q)
MeO-C(3,5)	3.90(s)	56.25(q)	3.88(s)	56.03(q)	3.87 (s)	56.04(q)
OH–C(4) or	5.59(s)	-	3.86 (s)	60.81(q)	3.85 (s)	60.83(q)
MeO-C(4)						
AcO	_	-	-	-	2.02(s)	21.03(q),
						171.12 (s)

Table 2. ¹*H*- and ¹³*C*-*NMR* Data of **4**–**6**. At 300 and 75 MHz, resp., in CDCl_3 ; δ in ppm, *J* in Hz; arbitrary atom numbering¹).

The ¹H- and ¹³C-NMR (DEPT) spectra indicated that **6** contained three MeO, two CH₂, three CH, and four quaternary C-atoms. The ¹H-NMR spectrum showed two overlapped C=CH moieties at δ (H) 6.54 (br. *s*, 2 H), an OH proton at δ (H) 5.59 (br. *s*, 1 H), and three MeO groups at δ (H) 3.90 (*s*, 6 H) and 3.24 (*s*, 3 H). In the ¹³C-NMR spectrum, typical signals for an oxygenated CH₂ at δ (C) 61.22 and an oxygenated CH at δ (C) 84.08 were present. The EI-MS of **6** with the molecular ion *M*⁺ at *m/z* 242 and the base peak at *m/z* 197 (loss of C₂H₅O), confirmed the presence of a CH₂CH₂OH moiety. The HMBC crosspeaks (*Fig.*) between the upfield MeO signal at δ (H) 3.24 and C(1') at δ (C) 84.08 indicated that this MeO group was attached at C(1')¹). The HMBC cross-peaks between H–C(1') at δ (H) 4.30 and C(2') at δ (C) 40.50 and C(3') at δ (C) 61.22 suggested the existence of a CH(OMe)CH₂CH₂OH side chain. In addition, the HMBC cross-peaks between H–C(1') at δ (H) 4.30 and C(2) and C(6) at δ (C) 102.82 indicated that this CH(OMe)CH₂CH₂OH side chain was attached at C(1) of the aromatic ring.

Compound **7** was obtained as a colorless gum. The molecular formula was established as $C_{13}H_{20}O_5$ on the basis of the HR-ESI-MS (m/z 279.1206 ($[M+Na]^+$)). The ¹H- and ¹³C-NMR spectral data (*Table 2*) of **7** were very similar to those of **6**, except for the signals of OH–C(4) which were replaced by those of a MeO–C(4)¹). This could be confirmed by the HMBC cross-peaks between MeO–C(4) at δ (H) 3.86 and C(4) at δ (C) 137.31. The above data allowed us to assign **7** as 3-hydroxy-1-methoxy-1-(3,4,5-trimethoxyphenyl)propane¹).

Compound **8** was characterized as the acetate of **7**. The IR spectrum revealed absorption bands for a C=O group (1737 cm⁻¹). The ¹H- and ¹³C-NMR spectra (*Table 2*) also suggested the presence of an AcO group (δ (H) 2.02 and δ (C) 21.03 and 171.12). These data, together with the molecular formula C₁₅H₂₂O₆, assigned by the HR-ESI-MS (*m*/*z* 321.1308 ([*M* + Na]⁺)), suggested for **8** the structure of 3-(acetyl-oxy)-1-methoxy-1-(3,4,5-trimethoxyphenyl)propane¹).

Compounds 6-8 are chiral and were isolated in optically active form. The absolute configuration at the asymmetric center C(1') was not determined.

The known compounds **4** [6] and **5** [6] were identified by comparison of their physical and spectral data with those reported in the literature.

This work was supported by the *National Natural Science Foundation of China* (No. 20021001, 20372029) and by a grant from the State Key Laboratory of Applied Organic Chemistry, Lanzhou University.

Experimental Part

General. Column chromatography (CC): silica gel (200–300 mesh; Qingdao Marine Chemical Factory, Qingdao, P. R. China). TLC: silica GF_{254} (10–40 µ; Qingdao Marine Chemical Factory); detection at 254 nm or by heating after spraying with 5% H₂SO₄ in EtOH (v/v). $[a]_D$: Perkin-Elmer-341 polarimeter. IR Spectra: Nicolet-NEXUS-670 FT-IR spectrometer; in cm⁻¹. UV Spectra: Shimadzu-UV-260 spectrometer. NMR Spectra: Bruker-AM-400 FT-NMR spectrometer and Varian-Mercury-300BB spectrometer (¹H at 400 or 300 MHz; ¹³C at 100 or 75 MHz); SiMe₄ as internal standard. MS: VG-ZABHS instrument at 70 eV for EI, and Bruker-APEX-II instrument with glycerol as the matrix for HR-ESI; in m/z(rel. %).

Plant Material. The whole plant of *Sonchus uliginosus* was collected in Heyang County, Shanxi province, P. R. China, in August 2005, and identified by Prof. *Guoliang Zhang* from the School of Life Science, Lanzhou University. A voucher specimen (No. 2005-C008) was deposited at the College of Chemistry and Chemical Engineering, Lanzhou University.

Extraction and Isolation. The air-dried whole plant of *S. uliginosus* (7.5 kg) was pulverized and extracted with MeOH (7 days \times 3 times) at r.t. The solvent was evaporated giving an extract (600.0 g)

which was suspended in $H_2O(1.5 l)$ and successively partitioned with petroleum ether (60-90°) (1.5 l), AcOEt (1.51), and BuOH (1.51). The AcOEt portion afforded, on concentration, a residue (7.8g) which was subjected to CC (silica gel (100 g), CHCl₃/MeOH 20:1, 15:1, 10:1, 5:1, 3:1, 1:1, and 0:1): Fractions F₁ (CHCl₃/MeOH 20:1, 800-1000 ml), F₂ (CHCl₃/MeOH 15:1, 1000-1200 ml), F₃ (CHCl₃/MeOH 10:1, 1000-1200 ml), F₄ (CHCl₃/MeOH 5:1, 2600-2800 ml), F₅ (CHCl₃/MeOH 3:1, 2800-2900 ml), F₆ (CHCl₃/MeOH 3:1, 1000-1200 ml), and F₇ (CHCl₃/MeOH 1:1 to 0:1, 3300-3500 ml). F_1 (185 mg) was subjected to repeated CC (silica gel, petroleum ether/AcOEt 2:1 to 1:1): pure 6 (6 mg), 7 (4 mg), and 8 (3 mg). F_2 (600 mg) was subjected to CC (silica gel, CHCl₃/acetone 8:1) to afford F_{2.1}, F_{2.2}, F_{2.3}, and F_{2.4}. F_{2.3} (68 mg) was further purified by repeated CC (silica gel, petroleum ether/acetone 2:1): 1 (18 mg) and 2 (12 mg). F_4 (2.0 g) was subjected to CC (silica gel, CHCl₃/MeOH 15:1) to afford a crude fraction which was further separated by prep. TLC (silica gel GF_{254} (10–40 μ), 25×25 cm, AcOEt/MeOH/H₂O 10:1:0.5): 5 (8 mg, R_f 0.476). F_5 (1.8 g) was subjected to CC (silica gel, CHCl₃/MeOH 10:1): $F_{5,1}$, $F_{5,2}$, $F_{5,3}$, $F_{5,4}$, and $F_{5,5}$. $F_{5,2}$ (800 mg) was further purified by repeated CC (silica gel, CHCl₃/MeOH 8:1) to afford crude 4 (96 mg) which was subjected to prep. TLC (silica gel GF₂₅₄ $(10-40 \ \mu)$, $25 \times 25 \ cm$, CHCl₃/MeOH 4:1): 4 (56 mg, R_f 0.434). F_6 (600 mg) was subjected to CC (silica gel, CHCl₃/MeOH 5:1) to afford a crude fraction containing 3 (32 mg) which was further separated by prep. TLC (silica gel GF_{254} (10–40 μ), 25×25 cm, AcOEt/MeOH/H₂O 5:1:0.5): **3** (12 mg, R_f 0.515).

 $(1\beta,6\alpha)$ -1,6,14-Trihydroxyeudesm-3-en-12-oic Acid γ -Lactone (=rel-(3R,3aR,5aS,6S,9aR,9bR)-3a,4, 5,5a,6,7,9a,9b-Octahydro-6-hydroxy-9-(hydroxymethyl)-3,5a-dimethylnaphtho[1,2-b]furan-2(3H)-one; 1): White amorphous powder. M.p. 208–210°. $[a]_{20}^{20}$ = + 104 (c = 0.2, acetone). IR: 3289, 1763. ¹H- and ¹³C-NMR: Table 1. EI-MS: 266 (48, M^+), 248 (100, $[M - H_2O]^+$). HR-ESI-MS: 284.1861 ($[M + NH_4]^+$, $C_{15}H_{26}^-NO_4^+$; calc. 284.1856).

 $(1\beta,6\alpha)$ -1,6,14-Trihydroxyeudesma-3,11(13)-dien-12-oic Acid γ -Lactone (=rel-(3aR,5aS,6S,9aR, 9bR)-3a,4,5,5a,6,7,9a,9b-Octahydro-6-hydroxy-9-(hydroxymethyl)-5a-methyl-3-methylenenaphtho[1,2-b]-furan-2(3H)-one; **2**): White amorphous powder. M.p. 208–210°. $[a]_{D}^{20} = +104$ (c=0.2, acetone). IR: 3290, 1753. ¹H- and ¹³C-NMR: Table 1. EI-MS: 264 (32, M^+), 246 (100, $[M-H_2O]^+$). HR-ESI-MS: 282.1707 ($[M+NH_4]^+$, $C_{15}H_{24}NO_4^+$; calc. 282.1700).

 $(1\beta,6a)$ -1,6-Dihydroxy-14-O-[(4-hydroxyphenyl)acetyl]eudesma-3,11(13)-dien-12-oic Acid γ -Lactone (=4-Hydroxybenzeneacetic Acid rel-[(3aR,5aS,6S,9aR,9bR)-2,3,3a,4,5,5a,6,7,9a,9b-Decahydro-6-hydroxy-5a-methyl-3-methylene-2-oxonaphtho[1,2-b]furan-9-yl]methyl Ester; **3**): Yellow gum. $[a]_{D}^{20}$ = +53 (c=1.0, MeOH). IR: 3404, 1759, 1710, 1611, 1516, 1445. ¹H- and ¹³C-NMR: Table 1. EI-MS: 398.1 (2, M^+), 380.1 (8, $[M-H_2O]^+$), 151.9 (45, [(4-hydroxyphenyl)acetic acid]⁺). HR-ESI-MS: 421.4446 ($[M+Na]^+$, C₂₃H₂₆NaO₆⁺; calc. 421.4445).

4-Hydroxy-γ,3,5-trimethoxybenzenepropanol (6): Colorless gum. $[a]_{20}^{20} = -8$ (c=0.4, CHCl₃). IR: 3361, 2920, 2851, 1610, 1516, 1459, 1419, 1212, 1112, 1046, 906, 836. ¹H- and ¹³C-NMR: *Table 2*. EI-MS: 242 (1.5, M^+), 197 (100, $[M - C_2H_5O]^+$). HR-ESI-MS: 265.1049 ($[M+Na]^+$, $C_{12}H_{18}NaO_5^+$; calc. 265.1046).

 γ ,3,4,5-*Tetramethoxybenzenepropanol* (7): Colorless gum. $[\alpha]_{20}^{20} = -10$ (c = 0.4, CHCl₃). IR: 3382, 2922, 2852, 1592, 1505, 1459, 1420, 1233, 1125, 1102, 834. ¹H- and ¹³C-NMR: *Table 2*. EI-MS: 256 (11.7, M^+), 211 (100, $[M - C_2H_5O]^+$). HR-ESI-MS: 279.1206 ($[M + Na]^+$, $C_{13}H_{20}NaO_5^+$; calc. 279.1203).

 γ ,3,4,5-*Tetramethoxybenzenepropanol Acetate* (8): Colorless gum. $[a]_D^{20} = -14$ (c=0.3, CHCl₃). IR: 3371, 2930, 2837, 1737, 1591, 1505, 1460, 1420, 1326, 1235, 1125, 1040, 835. ¹H- and ¹³C-NMR: *Table 2*. EI-MS: 298 (71, M^+), 211 (100, $[M - C_4H_7O_2]^+$). HR-ESI-MS: 321.1308 ($[M + Na]^+$, $C_{15}H_{22}NaO_6^+$; calc. 321.1309).

REFERENCES

- Jiangsu New Medical College, 'A Dictionary of the Traditional Chinese Medicines,' Shanghai Science and Technology Press, Shanghai, 1976, p. 1286.
- [2] Z. Mahmoud, S. El-Masry, M. Amer, J. Ziesche, F. Bohlmann, Phytochemistry 1983, 22, 1290.
- [3] Z. Mahmoud, S. El-Masry, M. Amer, J. Ziesche, M. Grenz, Phytochemistry 1984, 23, 1105.
- [4] T. Miyase, S. Fukushima, Chem. Pharm. Bull. 1987, 35, 2869.
- [5] S. Shimizu, T. Miyase, A. Ueno, K. Usmanghani, Phytochemistry 1989, 28, 3399.

- [6] Y.-F. Han, Q. Zhang, K. Gao, Z.-J. Jia, Planta Med. 2005, 71, 543.
- [7] A. G. González, A. Galindo, H. Mansilla, V. H. Kesternich, J. A. Palenzuela, M. Lopéz, *Tetrahedron* **1988**, *44*, 6750.
- [8] G. P. Moss, P. S. Pregosin, E. W. Randall, J. Chem. Soc., Perkin Trans. 1 1974, 1525.
- [9] A. M. Helal, N. Nakamura, H. E-Askary, M. Hattori, Phytochemistry 2000, 53, 473.
- [10] A. G. González, J. B. Barrera, L. Arancibia, J. G. Díaz, P. P. Paz, Phytochemistry 1991, 30, 4189.
- [11] J. F. Hu, X. Z. Feng, Planta Med. 2000, 66, 662.
- [12] S. K. Koul, S. C. Taneia, S. Malhotra, K. L. Dhar, *Phytochemistry* 1993, 32, 478.

Received August 3, 2006